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Problem session

The Problem Session was held on August 5, 1998, ddrezsvasarhely, chaired by
E. T. Schmidt. The following problems were presented.

R. FREESE

PROBLEM 1. Let L be a finitely presented lattice such that every nonzero join irre-
ducible element is completely join irreducible (that is, it has a lower cover) and dually. Is
L finite?

We have empirical evidence that this is true and that, when a finitely presented lattice
is infinite, there is an element of low rank witnessing this. If these statements could be
verified, we would have an alternate way of determining whether a finitely presented lattice
is finite.

G. GRATZER AND F. WEHRUNG

Let L be a lattice. A latticek is acongruence-preserving extensiohL, if K is an
extension and every congruencelohasexactly oneextension tak. Of course, then the
congruence lattice df is isomorphic to the congruence latticefof we could say that the
congruence lattices araturally isomorphic

A number of papers have been written on the existence of congruence-preserving exten-
sions with special properties, especially for finite lattices; see, for instance, the references
in Appendices A and B in [1].

Here we would like to raise an interesting problem that does not arise for finite lattices:

PROBLEM 2. LetL be a lattice. When dodshave a congruence-preserving extension
to a lattice with zero?

There are two relevant results, one positive and one negative.

THEROEM A. A distributive latticel. has a congruence-preserving extension to a lattice
with zero iff L itself has a zero.

THEOREM B. Let L be a lattice with a finite congruence lattice. Thénhas a
congruence-preserving extension to a sectionally complemented lattice.

The first theorem appears to be new (the proof is easy), while the second was published
in G. Gratzer and E. T. Schmidt [2].

Here is an obvious necessary condition for a general lattite have a congruence-
preserving extension into a lattice with zero. DenotelBythe latticeL with a new zero
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adjoined. IfL has a congruence-preserving extension into a lattice with zero, then the
natural embedding: ConL < ConL? admits aretraction that is, a\/-complete{v, 0}-
homomorphisnp: ConL%— Con L such thaip o j is the identity. However, note that this
condition also follows from the weaker condition thatadmits a congruence-preserving
extension into a lattic& such that there exists an elementbtontained in every element

of L.

Different types of problems arise, if we are looking for congruence-preserving extensions
into relatively complemented lattices. In the finite case, this is not an interesting question
since the congruence lattice of a finite relatively complemented lattice is Boolean. However,
as a special case of Theorem B, we obtain thfite lattice always has a congruence-
preserving extensions into a (finite) sectionally complemented lattice. On the other hand,
M. Plo&tica, J. ima, and F. Wehrung [4] exhibit a lattice of sigthat has no congruence-
preserving extension into a sectionally complemented lattice.

The following problem is open:

PROBLEM 3. LetL be an infinite lattice witHL| < 8;. DoesL have a congruence-
preserving extension to a (sectionally complemented) relatively complemented lattice?

The countable case is known to have a positive answer provided tleddcally finite
see J. Tima [5] and G. Gitzer, H. Lakser, and F. Wehrung [3]. Nothing seems to be known
about the casf.| = N3.

PROBLEM 4. LetL be afinite lattice. Does have a congruence-preserving extension
to a (finite) sectionally complemented lattice with the same bounds?

The construction of [2] gives an extension with the same zero, butthe unitis not preserved
asarule.
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C. HERRMANN

PROBLEM 5. Can every ortholattice be embedded into the principal left ideal lattice of
a“-regular ring?
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Let Fddpn) denote the free algebra engenerators over the equational class of all
distributive doublep-algebras.

PROBLEM 6. Determine Fddp(1), or more generally, Fddp(n).

In the paperCongruence Lattices of Pseudocomplemented Semilat&eai group
Forum 55 (1997), 1-23, | gave a characterization of the congruence latticé SCaf
an arbitrary pseudocomplemented semilattice This description uses a second-order
language.

PROBLEM 7. For afinites, is it possible to find a description of CE$) in a first-order
language?

K. A. KEARNES AND E. W. Kiss

PROBLEM 8. Let A1, A2,..., A, be nonempty sets. A rectangular subset of
A1 x --- x A, is a nonempty subset of the forfh x --- x B, with B; C A;, for each .
Suppose thati; x --- x A, is partitioned into fewer than"2rectangular subsets. Does it
follow that for one of these rectangular subséisx - - - x C, there exists an such that
Ci = A;?

PROBLEM 9. Characterize the homomorphic images of strongly Abelian algebras. Isit
true that in the case of finite similarity type, they are exactly the strongly nilpotent algebras?

PROBLEM 10. Give a Klukovits type characterization of locally finite weakly Abelian
varieties.

PROBLEM 11. Characterize all finite algebras A of finite similarity type such that the
number of inequivalent n-ary terms is at mos$t,Zor somec > 0 and alln > 0.

PROBLEM 12. (The restricted Quackenbush Conjecture) Is it true that if V is a finitely
generated variety of finite similarity type and all subdirectly irreducibles in V are finite,
then there are only finitely many subdirectly irreducibles in V?

PROBLEM 13. (Pixley’s Problem) If V is a variety whose subdirectly irreducibles are
finite, and whose finitely generated subvarieties are congruence distributive, then must V
be congruence distributive?



\ol. 45, 2001 Problem session 115

For background on Problems 8-10, see the paper K. A. Kearnes, E. W.Higg,
algebras of finite complexityiscrete Math207(1999), 89—135.

A. PINUS

An algebraA is calledquasi-simpléf, for any ® € Con A and® # Vy4, there exists
®' € ConA such tha®’ > ©® andA/®" = A.

A lattice L is calledup-indecomposabléf for any a € L with a # 1; there exists
a’ € Lsuchthatt > aandF, = L,whereF, ={be L,b>d'}.

PROBLEM 14. For any algebraic up-indecomposable lattice L, does there exist a quasi-
simple algebrai such that Com = L?

E. T. SCHMIDT

PROBLEM 15. LetL be alattice. Dodshave a congruence-preserving extension to a
lattice with type 3 congruences?

PROBLEM 16. Does every lattice has a congruence-preserving extension to a semi-
modular lattice?

B. SESELJA AND A. TEPAVCEVIC

Let ConwA denote the lattice of congruences of subalgebras of an algebith respect
toinclusion. IfA 4 stands for the diagonal relatigtu, a) | a € A}, then the idealA 4] of
ConwA is isomorphic to the subalgebra latticedfwhile the filter [A 4) is the congruence
lattice of A.

PROBLEM 17. LetL be an algebraic lattice and léte L with d > 0. Is there an
algebraA and an isomorphisnf : L = Conw(L) such that) sendsi to A4?

R. WILLARD
A decision problem:

PROBLEM 18. Input:

a finite algebra A (in a finite language),
an integemn > 1.

DoesV (A) contain aSI of cardinality> n? Is there an algorithm to decide this?



